A nuclear power station turns the nuclear energy in uranium atoms into electrical energy that can be used in homes and businesses.
The
reactor vessel (1) is a tough steel capsule that houses the fuel rods –
sealed metal cylinders containing pellets of uranium oxide. When a
neutron – a neutrally charged subatomic particle – hits a uranium atom,
the atom sometimes splits, releasing two or three more neutrons. This
process converts the nuclear energy that binds the atom together into
heat energy.
The fuel assemblies are arranged in such a way that when atoms in the fuel split, the neutrons they release are likely to hit other atoms and make them split as well. This chain reaction produces large quantities of heat.
Water flows through the reactor vessel, where the chain
reaction heats it to around 300°C. The water needs to stay in liquid
form for the power station to work, so the pressuriser (2) subjects it
to around 155 times atmospheric pressure, which stops it boiling.
The reactor coolant pump (3) circulates the hot pressurised water from
the reactor vessel to the steam generator (4). Here, the water flows
through thousands of looped pipes before circulating back to the
reactor vessel. A second stream of water flows through the steam
generator, around the outside of the pipes. This water is under much
less pressure, so the heat from the pipes boils it into steam.
The
steam then passes through a series of turbines (5), causing them to
spin, converting the heat energy produced in the reactor into
mechanical energy. A shaft connects the turbines to a generator, so
when the turbines spin, so does the generator. The generator uses an
electromagnetic field to convert this mechanical energy into electrical
energy.
A transformer converts the electrical energy from the
generator to a high voltage. The national grid uses high voltages to
transmit electricity efficiently through the power lines (6) to the
homes and businesses that need it (7). Here, other transformers reduce
the voltage back down to a usable level.
After passing through the
turbines, the steam comes into contact with pipes full of cold water
pumped in from the sea (8). The cold pipes cool the steam so that it
condenses back into water. It is then piped back to the steam
generator, where it can be heated up again, turn into steam again, and
keep the turbines turning.